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Abstract

Curves and surfaces in 3-dimensional Euclidean space are studied in elementary differen-
tial geometry courses, and so effective visual teaching materials are indispensable. By using
KeTCindy, we can present such materials to explain the concepts of the curvatures of curves and
surfaces. Materials created with KeTCindy contain animation and are given in PDF slide format,
so they are available in many environments. In this paper, we introduce these materials and their
use in the classroom.

Editor’s Note: The animations in this paper can be displayed properly only in Adobe
Acrobat or Adobe Reader.

1 Introduction
Differential geometry of curves and surfaces is a classical, important and interesting subject in math-
ematics, so it should be learned by every student of advanced mathematics, not only by those who are
majoring in mathematics. In fact, differential geometry is used to study curved surfaces and spaces
which are the foundations of Einstein’s theory of relativity. Moreover, it is applied to many other
fields, for example, architecture, diagnostic imaging, game software development, data mining, etc.

In order to facilitate the learning of differential geometry, the use of mathematics software is ben-
eficial. By using computers, one can calculate geometric invariants like curvatures in sufficiently
general cases and realize geometric objects with high precision graphics. In particular, since curves
and surfaces in 3-dimensional Euclidean space are visualizable in principle, there should be visual
teaching materials to illustrate the concepts of curvatures of curves and surfaces without using com-
plicated mathematical formulae.

Some attempts to explain differential geometry utilizing mathematics software have already been
made. For example, in the famous book [5] by Alfred Gray, Mathematica is used to calculate and
visualize geometric invariants like curvatures. See [6, 7] for other examples using Mathematica and
other attempts at visualizing geometrical concepts [8, 9, 10, 11]. In this paper, we propose new
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visual teaching materials for differential geometry made by using KETCindy. The advantage of
using KETCindy is that we can obtain TEX format files of generated figures, so we can naturally insert
them into PDF documents, which can be viewed by any PDF viewer without additional software.

The aim of this paper is to introduce our new teaching materials and to show how we used them in
the classroom. The first author has an elementary differential geometry course for students majoring
in information science or physics but not mathematics, so he tries to explain geometrical concepts
using not only mathematical expressions but also concrete examples and illustrations. He used to
draw many figures on the blackboard in his class but found it was difficult to express how geometric
objects move or change depending on the position from which they are viewed, an essential method of
explaining some concepts of “differential” geometry. Another difficulty was that some students tried
to make copies of the figures in their notebooks, which took too much time and they could not keep
up with the lectures. The authors believe that the use of KETCindy can solve these difficulties. In fact,
KETCindy can draw mathematically accurate figures and produce animations as well. Furthermore,
because those figures are made in PDF formats, we can share them with students on websites.

This paper is organized as follows. In the next section, we review what KETCindy is and what
can be done with it. In Section 3, we introduce our teaching materials for a course in differential
geometry. Section 4 is a report on the use of these materials in class.

2 KeTCindy
KETCindy [3, 4] is a macro package of Cinderella [1], a dynamic geometry software. To generate
a figure with KETCindy, one can use the graphical user interface of Cinderella to define points and
describe the geometrical object to be drawn by CindyScript, a script language implemented in Cin-
derella. By clicking the “Figure” button on the Cinderella screen, a batch process is executed so that
an R and/or C program is made and called to generate the LATEX code for the figure and then the LATEX
compiler and a PDF viewer are called. CindyScript programs can also call other software programs
such as Maxima, Risa/Asir, Fricas, Meshlab, if necessary (Figure 1). See [13, 14, 15] for details.

KETCindy

R and/or C LATEX

Maxima, Risa/Asir, etc.

invoke results

CindyScript
Geometric objects

source

TEXfile
compile and view the PDF

Figure 1: KETCindy flowchart

The KETCindy package contains various kinds of samples, so one can easily use KETCindy sim-
ply by choosing samples and arranging them into the desired format. In the following, we review
three functions of KETCindy that we mention in the next section, i.e., animation, PDF slides, and
KetCindyJS.
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2.1 Animation
KETCindy can create PDF files with animations. In principle, KETCindy generates a collection
of frames, figures slightly different from each other. KETCindy supports two types of animation,
”Anime” and ”Flip”, both of which can be incorporated into a PDF file.

To create an Anime type animation, the collection of frames is compiled into one figure on the
page and the result requires Adobe Acrobat Reader™ for playback. Below is an example of an Anime
type:

Figure 2: Anime type animation

On the other hand, in a Flip type animation, each frame is sent separately (Figure 3). To play the
animation, each frame is displayed separately on the page. Of course, this type of animation can be
played on any kind of PDF viewer.
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Figure 3: Flip type animation

Using Anime type animation is suitable when one wants to present the motion of a full picture, while
Flip type animation may be better for presenting the motion with pauses and reverse playbacks, as
one can operate the animation by oneself.

2.2 PDF slides
KETCindy enables users to generate PDF slides for presentations easily. To generates PDF slides, one
needs a text file written in a simplified version of TEX format. In fact, the simplified format accepts
the normal TEX codes, but some of the codes often used can be written in abbreviated forms. By
clicking the “Slides” button, KETCindy generates and compiles a TEX source file into a PDF file. One
can make lists of items to be shown one by one, like Beamer. Below is an example of a source code
and the resulting slides (Figure 4):

1 title::slide0::%wallpaper//
2
3 %%%%%%%%%%%%%%%%//
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4 new::Curvatures of surfaces//
5 %repeat=4//
6
7 enumerate//
8 %thin[2,-]::item::Normal curvature//
9 %thin[3,-]::item::Principal curvature//

10 %thin[4,-]::item::Gaussian curvature and mean curvature//
11 end//

Curvatures of surfaces

1. Normal curvature

2. Principal curvature

3. Gaussian curvature and mean curvature

Curvatures of surfaces

1. Normal curvature

2. Principal curvature

3. Gaussian curvature and mean curvature

Curvatures of surfaces

1. Normal curvature

2. Principal curvature

3. Gaussian curvature and mean curvature

Figure 4: PDF slides

The meanings of the codes are as follows:

• ℓ.1 inserts the title page created separately.

• ℓ.4 displays the title of the page.

• ℓ.5 generates a page with 4 slides. To be precise, 4 pages with the same page number will be
generated.

• ℓ.7–11 is the same as \begin{enumerate} . . .\end{enumerate} of normal TEX codes.

• ℓ.8–10 are items of the enumerate environment, but by putting %thin[n,-]:: at the begin-
ning of the line, the letters are displayed in light gray until page n, and from page n the letters
are displayed in the default color, black.

The insertion into a PDF slide of animations made using KETCindy is very easy. In fact, to insert
a Flip type animation, it is enough to add only one line like the following:

1 %repeat=,para=foldername:{0}:s{25}{10}:input//

Then all figures in foldername subfolder will be displayed in the preferred position (in this case,
x-position= 25 and y-position= 10), which will be a Flip type animation.

2.3 KeTCindyJS
CindyJS is a framework that enables CindyScript to be executed in HTML files. In particular, one
can convert Cinderella content into an HTML file which can be operated on web browsers, including
those of tablet devices and smartphones. Functions added as KETCindy can also be converted into an
HTML file, which we call KETCindyJS (see Figure 5 and [S1]).
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Figure 5: CindyJS content

3 Teaching materials for differential geometry course
In this section, we introduce teaching materials for differential geometry courses, made using KETCindy.
The aim of these materials is to help students intuitively understand the concepts of curvatures of
curves and surfaces through figures generated using KETCindy. For a detailed description of these
concepts, see [12], for example.

3.1 Curvature of plane curves
Let C(t) = (x(t), y(t)) be a parametrized curve in R2. Take a point P on this curve and consider
Γ a unique circle which approximates the curve C in the best possible manner. More precisely, Γ is
determined so that the derivatives coincide to those of the curve C up to the second order. This circle
is called the circle of curvature, and its radius R is defined as the radius of curvature at P. In the case
where the first and second derivatives vanish, we consider that the circle of curvature degenerates to
a line and define the radius of curvature as infinity.

Now take the unit tangent vector e1 to C at P in the direction where the parameter t increases and
let e2 be the unit vector at P obtained by rotating e1 by π

2
.

Then the curvature κ of the curve C at a point P is defined so that its absolute value is 1
R

and its
sign is positive when the circle of curvature lies on the left side of C, and negative otherwise. See
Figure 6.
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Figure 6: The sign of curvature
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The following is an animation which illustrates the change of the circle of curvature and the
curvature function of a curve:

Figure 7: Curve and its curvature

The components x(t), y(t) of C(t) are fourth order polynomials so that the curve C(t) passes
through given points P1, . . . ,P5. One can move these points interactively on the Cinderella screen
and bend the curve to the desired shape. Figure 5 and [S1] are CindyJS output. Such figures can be
given to students as auxiliary teaching material.

3.2 Curvatures of surfaces
Now consider a surface S in 3-dimensional Euclidean space. There are several concepts of curvatures
associated with a surface S at an arbitrary point P on it:

1. Normal curvature

2. Principal curvatures

3. Gaussian curvature and mean curvature

Let us explain these concepts in order.

3.2.1 Normal curvature

Let S be a surface and P be a point on S. Take a unit vector e1 tangent to S at P and the unit vector e2
normal to S at P. Note that e2 is uniquely determined for a fixed orientation of S. On the other hand,
the choice of e1 has freedom of 2π, and parametrized by θ ∈ [0, 2π] with respect to a fixed direction.
Then there exists a plane Πθ which passes through a point P and is spanned by e1, e2.

The intersection with the surface S defines a plane curve on Πθ, which is tangent to e1 and normal
to e2 at P; therefore, the curvature as a plane curve can be defined, which is called the normal cur-
vature κν(θ) of S at P in the direction of e1. By definition, the normal curvature κν(θ) is a function
on the circle S1. The following is a Flip type animation which consists of 48 frames (see [S2] for a
complete version).
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Normal Curvature

||◁ |◁ ◁ ▷ ▷| ▷|| 28/49

e1

e2

R

||◁ |◁ ◁ ▷ ▷| ▷|| 28/49

π 2πθ

κν

θ

κν

O

||◁ |◁ ◁ ▷ ▷| ▷|| 28/49

Figure 8: normal curvature

3.2.2 Principal curvatures

Since the circle is a compact space, there exist a maximum and a minimum of κν(θ). We call them
principal curvatures, denoted by κ1, κ2. The following slide explains the meaning of principal cur-
vatures.

6

Principal Curvatures

e1

e2

R π 2π

κ1

κ2

θ

κν

O

κ1 = max κν(θ), κ2 = min κν(θ)

Figure 9: principal curvatures

3.2.3 Gaussian curvature

The product κ1κ2 of principal curvatures κ1, κ2 is called the Gaussian curvature of a surface S at
a point P. For example, in the case of point P in the figure above, we can see that the Gaussian
curvature K is negative as κ1 > 0 and κ2 < 0 hold.

On the other hand, at points where the surface is convex, as in the frame on the left in Figure 10,
the Gaussian curvature at those points are positive as the signs of κ1 and κ2 coincide. In the case of a
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cylindrical surface (Figure 10 right), we can easily see that K = 0 [S3].

9

Convex surface
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κ1 < 0, κ2 < 0 ⇒ K = κ1κ2 > 0

11

Parabolic Cylinder
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π 2π
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κ1 > 0, κ2 = 0 ⇒ K = κ1κ2 = 0

Figure 10

3.2.4 Mean curvature and minimal surfaces

If κ1 and κ2 are the principal curvature of a surface S at a point Pp in S, then the mean curvature
H is defined as their mean 1

2
(κ1 + κ2). A surface S is called minimal if its mean curvature vanishes

at every point of S. It is easy to see that minimal surfaces have non-positive Gaussian curvature. A
minimal surface can also be characterized as the surface with the least area among those with the same
boundary. The following Flip type animation can explain this characterization of minimal surfaces
(see [S4]).

Minimal surface

||◁ |◁ ◁ ▷ ▷| ▷|| 38/41

(a part of) Catenoid deformation

Minimal surface

||◁ |◁ ◁ ▷ ▷| ▷|| 21/41

70.88

t

Area

O

||◁ |◁ ◁ ▷ ▷| ▷|| 21/41

Figure 11: Minimal surface

3.2.5 Isometric deformation

Typical examples of minimal surfaces are the helicoid and the catenoid. Both of these surfaces have
Gaussian curvatures of −1 and mean curvatures of zero, but they are embedded in space differently. A
helicoid can be deformed continuously and isometrically into a catenoid, as the following animation
illustrates.
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4 Use of the materials in a class
In this section, we report on how the teaching materials in the last section were used in class. The first
author has an elementary differential geometry course for third-year students majoring in information
science or physics and who have studied calculus and linear algebra. Here we pick up a class at about
the middle of the semester in which we used the materials described in this paper. The students had
already learned about the curvatures of plane curves and parametric representation and the fundamen-
tal quantities of surfaces. The goal of the class was to help students understand the definitions and
meanings of Gaussian and mean curvatures of surfaces and to get them to deduce the formula needed
to calculate them.

The schedule of the 90-minutes class was as follows:
Time Content Device
5min Review of geometric meaning of the curvature of a plane curve using

materials we introduced in §3.1
projector

10min Explanation of geometric meanings of curvatures using materials in
§3.2

projector

30min Mathematical formulation of the Gaussian and mean curvatures and
derivation of the calculation formula for them

blackboard

10min Revisit to geometric meanings of curvatures, with additional examples projector
15min Exercises on calculations of curvatures of surfaces explicitly defined by

parameters
handout

Actually, the class was conducted roughly as planned. The following are the advantages that the
authors found in using these teaching materials created with KETCindy
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• A variety of examples can be made by changing the parameters, function or viewpoint of one
figure. In the class we reported on above, five different surfaces were considered to characterize
the properties of Gaussian curvature.

• By using slides with figures and animations, we could show the outline of the theory in a
short amount of time, which also helped the students to understand the mathematical arguments
explained using a blackboard.

• As the part of the intuitive and geometrical illustration using PDF slides and that of mathemati-
cal argument using a blackboard were explained separately, both the students and the professor
could avoid confusion and concentrate on each topic.

• By using prepared slide materials, time for explanation was reduced. As a result, the professor
could introduce additional topics.

• All the PDF slides were uploaded to a web site, so that the students could download them. In
fact, many students accessed the web site and used the slides for review.

5 Concluding remarks and future work
We have seen that by using KETCindy we can produce visual materials which help students understand
some aspects of the differential geometry of curves and surfaces. These materials include animation
that will help learners to establish geometrical intuition of the concepts of curvatures. As KETCindy
generates TEX files, these figures can be presented both in slides and printed materials. If we use
CindyJS in addition to these materials, the learning effect will be enhanced, and differential geometry
will become much more familiar to students.
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Editor’s Note: The [S1] link should be opened in Google Chrome and may require you to allow
third-party JavaScript to show correctly.

[S1] Example of KeTCindyJS content

[S2] PDF slides (Flip type animation): normal curvature

[S3] PDF slides (Flip type animation): normal curvatureof a convex surface and a parabolic cylinder

[S4] PDF slides (Flip type animation): minimal surface
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